Role of perfusion CT in glioma grading and comparison with conventional MR imaging features.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Perfusion imaging using CT can provide additional information about tumor vascularity and angiogenesis for characterizing gliomas. The purpose of our study was to demonstrate the usefulness of various perfusion CT (PCT) parameters in assessing the grade of treatment-naïve gliomas and also to compare it with conventional MR imaging features. MATERIALS AND METHODS PCT was performed in 19 patients with glioma (14 high-grade gliomas and 5 low-grade gliomas). Normalized ratios of the PCT parameters (normalized cerebral blood volume [nCBV], normalized cerebral blood flow [nCBF], normalized mean transit time [nMTT]) were used for final analysis. Conventional MR imaging features of these tumors were assessed separately and compared with PCT parameters. Low- and high-grade gliomas were compared by using the nonparametric Wilcoxon 2-sample tests. RESULTS Mean nCBV in the high- and low-grade gliomas was 3.06 +/- 1.35 and 1.44 +/- 0.42, respectively, with a statistically significant difference between the 2 groups (P = .005). Mean nCBF for the high- and low-grade gliomas was 3.03 +/- 2.16 and 1.16 +/- 0.36, respectively, with a statistically significant difference between the 2 groups (P = .045). Cut points of >1.92 for nCBV (85.7% sensitivity and 100% specificity), >1.48 for nCBF (71.4% sensitivity and 100% specificity), and <1.94 for nMTT (92.9% sensitivity and 40% specificity) were found to identify the high-grade gliomas. nCBV was the single best parameter; however, using either nCBV of >1.92 or nCBF of >1.48 improved the sensitivity and specificity to 92.9% and 100%, respectively. The sensitivity and specificity for diagnosing a high-grade glioma with conventional MR imaging were 85.7% and 60%, respectively. CONCLUSIONS PCT can be used for preoperative grading of gliomas and can provide valuable complementary information about tumor hemodynamics, not available with conventional imaging techniques. nCBV was the single best parameter correlating with glioma grades, though using nCBF when nCBV was <1.92 improved the sensitivity. An nCBV threshold of >1.92 was found to identify the high-grade gliomas.
منابع مشابه
The role of relative cerebral blood volume obtained from Perfusion Weighted Imaging-MRI in glioma tumor grading before surgery
Introduction: Glioma is the most common type of brain malignancy among adults. Treatment for this type of tumor involves surgery, radiotherapy, and in higher grades, including chemotherapy. The precise grading of the tumor is critical for treatment planning and prognosis determining. Considering the possibility of problems such as errors in tissue sampling during surgery, as we...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملGlioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging.
BACKGROUND AND PURPOSE Sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of conventional MR imaging in predicting glioma grade are not high. Relative cerebral blood volume (rCBV) measurements derived from perfusion MR imaging and metabolite ratios from proton MR spectroscopy are useful in predicting glioma grade. We evaluated the sensitivity, specificity, PPV, an...
متن کاملCerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging.
Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can po...
متن کاملGrading of Glioma Tumors by Analysis of Minimum Apparent Diffusion Coefficient and Maximum Relative Cerebral Blood Volume
Background: Gliomas are the most common primary neoplasms of the central nervous system. Relative cerebral blood volume (rCBV) could estimate high-grade Gliomas computed with dynamic susceptibility contrast MR imaging which it is artificially lowered by contrast extravasation through a disrupted blood-brain barrier. Objectives: Our intent was to clarify the usefulness of diffusion-weighted m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2007